Photodegradable hydrogels for dynamic tuning of physical and chemical properties.

نویسندگان

  • April M Kloxin
  • Andrea M Kasko
  • Chelsea N Salinas
  • Kristi S Anseth
چکیده

We report a strategy to create photodegradable poly(ethylene glycol)-based hydrogels through rapid polymerization of cytocompatible macromers for remote manipulation of gel properties in situ. Postgelation control of the gel properties was demonstrated to introduce temporal changes, creation of arbitrarily shaped features, and on-demand pendant functionality release. Channels photodegraded within a hydrogel containing encapsulated cells allow cell migration. Temporal variation of the biochemical gel composition was used to influence chondrogenic differentiation of encapsulated stem cells. Photodegradable gels that allow real-time manipulation of material properties or chemistry provide dynamic environments with the scope to answer fundamental questions about material regulation of live cell function and may affect an array of applications from design of drug delivery vehicles to tissue engineering systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology

Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...

متن کامل

Mechanical Properties and Degradation of Chain and Step-Polymerized Photodegradable Hydrogels

The relationship between polymeric hydrogel microstructure and macroscopic properties is of specific interest to the materials science and polymer science communities for the rational design of materials for targeted applications. Specifically, research has focused on elucidating the role of network formation and connectivity on mechanical integrity and degradation behavior. Here, we compared t...

متن کامل

Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype.

Biophysical cues are widely recognized to influence cell phenotype. While this evidence was established using static substrates, there is growing interest in creating stimulus-responsive biomaterials that better recapitulate the dynamic extracellular matrix. Here, a clickable, photodegradable hydrogel substrate that allows the user to precisely control substrate elasticity and topography in sit...

متن کامل

Optical Cell Picking in Photodegradable Hydrogels Based on Cellular Morphology in 3d Culture Environment

We present a new methodology for optical cell picking in 3D culture environment, because biological cells often show phenotype alterations by the interactions with pericellular matrix in 3D culture. In this study, we encapsulated cells in photodegradable hydrogels by mixing cell-containing gelatin solution with crosslinker, NHS-PC-4armPEG. The minimum resolution of photodegradation was estimate...

متن کامل

Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 324 5923  شماره 

صفحات  -

تاریخ انتشار 2009